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Transition noise in recording

• A major source of distortion in perpendicular recording is transition noise just as in longitudinal
recording.

• The cause of transition noise is the granular structure of the recording media.

• To account for transition noise, the microtrack model [Caroselli and Wolf] is used.

• Divide one recording track into smaller microtracks each with a random shift.
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The microtrack model
Microtrack Transition Positions

Microtrack Transition Responses

Microtrack Output Waveform
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The microtrack model (cont.)

• Sum delta-functions and convolve with long response once.
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• The τ ’s are obtained from a CDF derived from the average magnetization transition profile:
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• Define: Nt - number of microtracks, lh- length of h (t), and Xs- oversampling rate.

• Original microtrack model: Nt · lh · Xs operations per bit.

• Convolve once approach: Nt + lh · Xs operations per bit.
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Model architecture and the simulator flow

• To describe the simulator exactly, its flow can be broken down into 4 steps:

1. Create a table of random shifts or the τ -table.

2. Generate Uniform Random Numbers (URNs) to index into the τ -table.

3. Shift the impulses and sum to form r (t).

4. Convolve r (t) with h (t) to reconstruct s (t).
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Oversampling by “binning”

• The response h (t) and hence, s (t) are sampled by the simulator.

• To minimize aliasing, internal oversampling is performed by partitioning the period in between
two output waveform samples into discrete “bins.”

a
k

16X internal oversampling
4X  output oversampling

T
bit

NRZI data

output sample points a "bin"
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Step 1 and 2: Creating the τ -table and generating URNs
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• The random τ shifts are quantized and stored as bin numbers.

• The Mersenne Twister random number generator is used during simulation to produce random
indices to pick out the random shifts in bin numbers.
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Step 3: Generating the microtrack impulses r (t)
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• Assign the impulses to bins according to the random bin numbers and sum to obtain r (t).
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Step 4: Reconstructing the output waveform s (t)
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• The output waveform s (t) is obtained by convolving r (t) with h (t).

• Can partition the discrete-time representation of h (t) into the product of an accumulator and its
shortened derivative h′ (D) to increase simulation speed.
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Effects of τ -quantization: throughput vs. distortion
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• The distortion at a throughput of more than 1 Mbps is still small.
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Simulator speed enhancement via response shortening

• Consider the final waveform reconstruction filter:
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• The IIR filter has much fewer taps.
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Distortion reduction via response matching

• Windowing h′ (D) removes the notch at DC in its frequency response.

• The distortion error is reduced by further filtering with a high-pass filter, thus re-introducing the
notch at DC.
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Distortion and throughput profile with response shortening
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• The improved response matching reduces distortion.

• Redundant computations in the final filtering and decimation can be eliminated by computing
one in every Nbin/Xs samples.

UC SAN DIEGO 12 Intermag 2004



A Fast Data Simulator for High Density Perpendicular Recording

Other noise effects

• By accounting for other noise effects, a more realistic waveform s (t) can be produced.

• Non-uniform track width: weighting the microtracks by a profile wk

• Track edge curvature: shifting the transitions by a track curvature profile ck

• DC noise as AWGN

s (t) =
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k=0
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Nt−1
X

i=0

h (t − kT − τi,k + ck) + nDC(t).
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Summary

• Presented a waveform simulator for perpendicular recording based on the microtrack model.

• Performance and distortion tradeoffs were quantified.

• A throughput of more than 1 Mbps can be achieved on a contemporary desktop computer with
negligible distortion.

• Other noise sources can also be incorporated to further increase the accuracy of the generated
waveform.

UC SAN DIEGO 14 Intermag 2004



A Fast Data Simulator for High Density Perpendicular Recording

References

1. J. P. Caroselli and J. K. Wolf, “Applications of a new simulation model for media noise limited
magnetic recording channels,” IEEE Trans. Magn., vol. 32, pp. 3917-3919, Sept. 1996.

2. J. P. Caroselli, Modeling, Analysis, and Mitigation of Medium Noise in Thin Film Magnetic
Recording Channels. Ph.D. Thesis, University of California, San Diego, 1998.

UC SAN DIEGO 15 Intermag 2004


